
A Meeting Room
Scheduling Problem

Objective Engineering, Inc.

699 Windsong Trail
Austin, Texas 78746

512-328-9658
FAX: 512-328-9661
ooinfo@oeng.com

http://www.oeng.com

© Objective Engineering, Inc., 1999-2007.

Photocopying, electronic distribution, or foreign-language translation of this
document is permitted for personal and classroom use, provided this document is
reproduced in its entirety and accompanied by this notice and by its copyright.
Copies and translations may not be used or distributed for profit or commercial
advantage without prior written approval from Objective Engineering, Inc.

Part I: The Problem

Design a system to schedule meetings and meeting rooms. A user can use this
system simply to request a room of a given size for a given period of time. For
example, a user can request a room that will hold 30 people from 1 p.m. until 3
p.m. this Friday. In addition, a user can request that an existing meeting
(already defined in the system with a set of attendees) be scheduled at with a
particular starting time and ending time. For example, a user can ask to have
the Browser Project staff meeting scheduled this Thursday from 2 p.m. until 3
p.m. (That meeting has already been defined in the system and currently
includes 11 attendees.)

A user can cancel any scheduled meeting or any room assignment up until the
point at which the meeting or assignment begins (i.e., up until 1 p.m. on Friday
and 2 p.m. on Thursday in the above two examples, respectively).

When a meeting is scheduled, an electronic message about that meeting must
be sent to each attendee. Likewise, when a meeting is canceled, each attendee
must be informed by electronic mail about the cancellation.

A user must also be able to define or alter a meeting. When defining the
meeting, the user provides a list of attendees. The user may alter a meeting
definition by adding attendees to or removing attendees from the meeting. A
user may also remove an entire meeting definition. Note that adding or
removing attendees has no effect on scheduled instances of that meeting
(unless the last attendee is removed from a meeting, in which case future
scheduled occurrences of that meeting should be canceled). A result of
removing a meeting, on the other hand, is that all scheduled instances of that
meeting must be canceled.

Assume the existence of a Post Office package that contains Post Office and
Address classes. The Post Office class defines one method:

deliverMessage(recipient : Address, message : String). It delivers
the specified message to the specified recipient. (Assume that all
messages are delivered.)

Assume the existence of an Employee Management package that defines an
employee management component. That package exports a facade class,
Employee Management, and an Employee interface class. The facade class
defines the following methods:

employee(employeeNumber : integer) : Employee. Given an employee
number, this method returns as type Employee a reference to an object
defining the employee with that employee number.
© 1999-2007 by Objective Engineering, Inc. Page 1

The Employee interface defines the (abstract) methods:

address() : Address. This method returns the electronic mail address
of the employee.

name() : String. This method returns the name of the employee.
© 1999-2007 by Objective Engineering, Inc. Page 2

Part II: A Solution

The meeting scheduling problem describes a system that schedules meetings
and rooms. The solution to this problem presented here consists of a
requirements model and an initial design.

The requirements model includes a use case diagram using standard UML
notation. To augment that diagram, the model also contains a description of
each use case. Although UML prescribes no particular form for such
descriptions, this model specifies each use case in terms of its trigger,
preconditions, and postconditions.

The design is cast as a class diagram and a set of interaction diagrams.
Additional textual descriptions of several classes are included.

While this document describes a relatively simple meeting scheduling system,
the reader may wish to ponder various extensions. For example, the system
could:

• Allow a user to request that a meeting be scheduled at the earliest time
possible (or perhaps at the earliest time on or after some specified date).

• Consult a personal calendar for each attendee when scheduling a
meeting. An employee’s calendar indicates when that individual is not
otherwise engaged. A meeting can be scheduled only if all attendees are
available.

• Allow employees to be grouped (such as by project), and designate
groups (as well as individuals) as attendees of a meeting.

• Maintain two lists of attendees for a meeting: those who must attend
versus those whose attendance is optional.

• Allow a user to obtain a list of his or her meetings.

A Requirements Model

The meeting scheduling system has at least one type of actor: the Scheduler.
Despite its name, this role is played by a person who requests that a meeting or
room be scheduled. Recall, however, that the system permits its users to define
meetings and to alter those definitions. Can the persons who schedule
meetings and rooms also define new meetings? If not, the requirements model
must include another actor modeling a second role, Meeting Administrator.
Note, however, that these actors define roles; in some cases, the same
individual may play both roles.

A person playing the role of a Scheduler can perform the following functions:

a) Schedule a particular meeting for a particular time interval;
© 1999-2007 by Objective Engineering, Inc. Page 3

b) Request a room for a particular time interval;

c) Cancel a particular meeting scheduled for a particular time; and

d) Cancel a room assignment for a particular time.

The Schedule Meeting, Schedule Room, Cancel Meeting, and Release Room use
cases, respectively, will be used to model these four functions. A person acting
as a Meeting Administrator can do the following:

a) Define a meeting;

b) Add an attendee to a meeting;

c) Remove an attendee from a meeting; and

d) Remove a meeting definition.

These will be modeled by the Define Meeting, Add Attendee, Remove Attendee,
and Remove Meeting use cases, respectively.

Two of these use cases always use (or include) two others as a part of their
behavior. Scheduling a meeting requires the use of scheduling a room to select
a room for the meeting. Likewise, canceling a meeting employs the behavior for
releasing a room. These appear as «uses» (in UML 1.1 and 1.2) or «includes»
(in UML 1.3) relationships in a use case diagram.

What happens when a Meeting Administrator removes a meeting definition from
the system, but scheduled instances of that meeting exist in the future? In that
situation, those scheduled instances should be canceled. One approach to
modeling that relationship is to indicate that Cancel Meeting extends (i.e.,
«extends») Remove Meeting. That is, the Remove Meeting behavior is
conditionally extended by the behavior of the Cancel Meeting use case.

Likewise, if the last attendee is removed from a meeting definition, and future
scheduled instances of that meeting exist, those instances should be canceled
(thereby releasing the room). This implies that the Cancel Meeting use case
«extends» Remove Attendee.

Because a Post Office instance and the Employee Management component are
external software applications with which the meeting scheduling system must
communicate, you should include those two entities as actors. Their
interactions with the scheduling system include:

• When defining a meeting, a Meeting Administrator specifies a list of
attendees in the form of employee identifiers. (An employee identifier is
any unique key for an employee, such as an employee number or system
user name). If the scheduling system must check those identifiers for
© 1999-2007 by Objective Engineering, Inc. Page 4

validity, it must interact with the Employee Management component.
(For this solution, however, assume that the employee identifiers are
validated before they are presented to the scheduling system.)

• Scheduling and canceling a meeting requires an interaction with the
Post Office, as each attendee must be informed. To obtain each
attendee’s electronic mail address, those two use cases must also
interact with the Employee Management component.

Figures 1a and 1b contain UML 1.1/1.2 and UML 1.3 use case diagrams,
respectively, for this problem. Each includes the actors, use cases, and use
case relationships described above.

Define

Figure 1a: A UML 1.1/1.2 use case diagram for meeting scheduling.

Meeting

Schedule
Meeting

Cancel
Meeting

Scheduler

Meeting

Meeting Scheduler

Release
Room

«uses»

Administrator

Schedule
Room

Add
Attendee

Remove
Attendee

Remove
Meeting

«uses»

Post
Office

«extends»

Employee
Management

«extends»
© 1999-2007 by Objective Engineering, Inc. Page 5

The use case diagram in Figure 1 ignores some exceptional behavior that may
arise during the use of the scheduling system. One exceptional condition
occurs when a room is requested but no room of the given size is available for
the given period. If handling this condition requires non-trivial behavior, such
as logging the failed request for a room, that behavior could be modeled as a
separate use case (e.g., Diagnose Unavailable Room) that extends Schedule
Room. Because it entails only returning an error to the user, however, it is
wrapped into the Schedule Room use case in this solution.

Define

Figure 1b: A UML 1.3 use case diagram for meeting scheduling.

Meeting

Schedule
Meeting

Cancel
Meeting

Scheduler

Meeting

Meeting Scheduler

Release
Room

«include»

Administrator

Schedule
Room

Add
Attendee

Remove
Attendee

Remove
Meeting

«include»

Post
Office

«extend»

Employee
Management

«extend»
© 1999-2007 by Objective Engineering, Inc. Page 6

At least two other exceptional situations result from adding an attendee to or
removing an attendee from the definition of a meeting. What if an attendee is
added to a meeting definition of which there are scheduled meetings in the
future? It seems reasonable to assume that the attendee is expected to be
present at those meetings and therefore must be informed of their dates.
Likewise, when an attendee is removed from a meeting definition of which there
are future scheduled meetings, the attendee should be informed that his or her
attendance at those meetings is not required.

Consider Mary’s staff meeting, a specific meeting definition. An existing
attendee of Mary’s staff meeting must be informed when Mary’s staff is
scheduled (by the Schedule Meeting use case) to meet next Monday at 10 a.m.
An attendee subsequently added to the definition of Mary’s staff meeting (by
Add Attendee) must also be informed of next Monday’s meeting. Do these two
acts constitute the same behavior?

If the two behaviors are essentially identical, as is assumed here, then a single
use case, Inform of Meeting, can model that function. That use case is used by
Schedule Meeting (because it always informs its attendees), and it extends the
Add Attendee use (because it occurs only in cases where a future meeting is
scheduled).

Likewise, an Inform of Cancellation use case is used to inform the employee
that the employee should not attend a specified meeting at a specified time,
either because the meeting has been canceled, or because the employee is no
longer an attendee of the meeting. The Cancel Meeting use case uses the Inform
of Cancellation use case, which in turn extends the Remove Attendee use case.

The use case diagrams in Figures 2a and 2b are each an elaboration of one of
the previous use case diagram. In particular, it includes the Inform of Meeting
and Inform of Cancellation use cases and their relationships. Observe that
those new use cases interact with the Employee Management and Post Office
actors (to obtain electronic mail addresses and to deliver messages,
respectively).

One way to describe the use cases in Figures 2a and 2b is by specifying each
use case’s trigger, preconditions, and postconditions. (Note that this form is not
defined as a part of UML.) The Define Meeting use case is invoked to add a
meeting definition to the system. It has the following specification:

Trigger:
• an event,

defineMeeting(name, attendees: array of employeeId)

Preconditions:
• A meeting named name does not already exist in the system.
© 1999-2007 by Objective Engineering, Inc. Page 7

Define

Figure 2a: A more detailed (UML 1.1/1.2) use case diagram.

Meeting

Schedule
Meeting

Cancel
Meeting

Scheduler

Meeting

Meeting Scheduler

Release
Room

«uses»

Administrator

Schedule
Room

Add
Attendee

Remove
Attendee

Remove
Meeting

«uses»

Post
Office

«extends»

Employee
Management

Inform of
Meeting

Inform of
Cancellation

«uses»

«extends»

«extends»

«uses»

«extends»
© 1999-2007 by Objective Engineering, Inc. Page 8

Define

Figure 2b: A more detailed (UML 1.3) use case diagram.

Meeting

Schedule
Meeting

Cancel
Meeting

Scheduler

Meeting

Meeting Scheduler

Release
Room

«include»

Administrator

Schedule
Room

Add
Attendee

Remove
Attendee

Remove
Meeting

«include»

Post
Office

«extend»

Employee
Management

Inform of
Meeting

Inform of
Cancellation

«include»

«extend»

«extend»

«include»

«extend»
© 1999-2007 by Objective Engineering, Inc. Page 9

Postconditions:
• There exists a definition of this meeting, m, in the system.
• m’s attendee list includes the attendees provided to the use case.

The Add Attendee use case is employed to add an attendee to an existing
meeting definition. The definition of the use case is:

Trigger:
• an event, addAttendee(meetingName, attendee: employeeId)

Preconditions:
• There exists m, a definition for a meeting named name, in the system.

Postconditions:
• m’s attendee list includes the attendee provided to the use case.
• If any future scheduled instances of m exist, then apply the extension

Inform of Meeting to inform the attendee of each such instance.

The Add Attendee use case is extended by the Inform of Meeting use case. That
latter use case’s specification is:

Trigger:
• an internal condition,

its use by Schedule Meeting or extension of Add Attendee
(to inform an employee indicated by employeeId about a

meeting m during time period p)

Preconditions:
• none

Postconditions:
• an invitation to meeting m during period p is sent to the electronic mail

address of the indicated employee

The Remove Attendee use case removes an attendee from an existing meeting
definition. Its specification is:

Trigger:
• an event,

removeAttendee(meetingName, attendee: employeeId)

Preconditions:
• There exists m, a definition for a meeting named name, in the system.
• The attendee provided to the use case is an attendee of that meeting.

Postconditions:
• m’s attendee list does not include the attendee provided to the use case.
• If any future scheduled instances of m exist, then apply the extension

Inform of Cancellation to inform the attendee of each such instance.
• If, after removing the attendee, m’s attendee list is empty, and if future

scheduled instances of m exist, the apply the extension Cancel Meeting to
cancel those instances.
© 1999-2007 by Objective Engineering, Inc. Page 10

The Remove Meeting use case removes a meeting definition from the system.
Furthermore, if any scheduled instances of that meeting exist, they must be
canceled. (The Cancel Meeting use case is therefore an extension of this use
case.) The Remove Meeting specification is:

Trigger:
• an event, removeMeeting(meetingName)

Preconditions:
• There exists m, a definition for a meeting named name, in the system.

Postconditions:
• m no longer exists in the system.
• For any scheduled instance, d, of meeting m:

cancelMeeting(d, st),
where st is the scheduled starting time of d.

The Inform of Cancellation use case extends the Remove Attendee use case. Its
specification is:

Trigger:
• an internal condition,

its use by Cancel Meeting or extension of Remove Attendee
(to inform an employee indicated by employeeId about a

meeting m during time period p)

Preconditions:
• none

Postconditions:
• a retraction of the invitation to meeting m during period p is sent to the

electronic mail address of the indicated employee

The Schedule Room use case schedules a room of a specified size for a specified
time period. Its specification is:

Trigger:
• an event, scheduleRoom(size, timePeriod): roomNumber

Preconditions:
• There exists a room, r, such that r’s size is at least as large as size, and r

is available during timePeriod.

Postconditions:
• For the smallest room, r, such that r’s size is at least as large as size and

r is available during timePeriod:
r is no longer available during timePeriod, and
return r’s room number

The Release Room use case releases a specified room during a specified time
period. The definition of Release Room is:
© 1999-2007 by Objective Engineering, Inc. Page 11

Trigger:
• an event, releaseRoom(roomNumber, timePeriod)

Preconditions:
• The room, r, whose room number is roomNumber is not available during

timePeriod.

Postconditions:
• The room, r, whose room number is roomNumber is available during

timePeriod.

To schedule a meeting, you employ the Schedule Meeting use case. That use
case schedules a specified meeting for a specified time period. Its specification
is:

Trigger:
• an event, scheduleMeeting(name, timePeriod)

Preconditions:
• There exists a defined meeting, m, in the system such that m’s name is

name.
• There is no instance of m scheduled during timePeriod.

Postconditions:
• There is a scheduled instance of m during timePeriod.
• m is assigned a room determined by scheduleRoom(size,

timePeriod), where size is the number of attendees of m.
• Each attendee of m is informed of the scheduled meeting through the

Inform of Meeting use case.

The Cancel Meeting use case cancels a specified meeting with a specified
starting time. Its specification is:

Trigger:
• an event, cancelMeeting(name, startTime)

Preconditions:
• There exists a defined meeting, m, in the system such that m’s name is

name.
• There is a scheduled instance of m that will start at startTime.

Postconditions:
• The scheduled instance, i, of m starting at startTime has been removed

from the system.
• i’s room is released using releaseRoom(roomNumer, timePeriod),

where roomNumber is the room assigned to i, and timePeriod is i’s time
period.

• Each attendee of m is informed of the canceled meeting through the
Inform of Cancellation use case.
© 1999-2007 by Objective Engineering, Inc. Page 12

These specifications indicate exactly what each use case must accomplish and
therefore can be a valuable resource when developing the design.

The Design

You are provided a Post Office package with Post Office and Address classes.
You can also assume the existence of an Employee Management component
with an Employee Management facade class and an Employee interface class.
Figure 3 depicts those entities.

What classes are required by the scheduling software? If you enumerate the
tangible things, roles, events, and interactions in the problem domain, you
arrive at the following list:

Meeting. An instance of this class represents a meeting that can be
scheduled again and again. Its attributes include a name and a list of
the attendee’s employee identifiers.

«component»
Employee Management

Employee Management

employee(employeeId)
 : Employee

«interface»

address() : Address

Employee

name() : String

Post Office

Post Office

deliverMessage
 (recipient : Address,

Address

 message : String)

Figure 3: Existing packages.
© 1999-2007 by Objective Engineering, Inc. Page 13

Scheduled Meeting. A Scheduled Meeting is a scheduled instance of a
Meeting. It has a starting and ending time.

Room. A Room instance models a meeting room. It has a capacity (the
number of people the room will hold) and a location (most likely a room
number).

Room Assignment. An instance of this class represents the scheduling of a
Room for a particular temporal interval. It includes a starting and
ending time.

Figure 4 depicts these classes and their attributes.

The classes in Figure 4 provide a starting point. By what process can you
elaborate this design? Given the existence of use case specifications, an
obvious approach is to employ those descriptions to guide the static design. In
particular, you analyze each specification, adding the properties to the class
diagram required to check the preconditions and effect the postconditions of the
use case.

Consider the first use case, Define Meeting. This use case is triggered when a
user playing the role of Meeting Administrator issues a request to define a
meeting. How shall that user access the scheduling system to make that
request? Let’s assume that all client (GUI) interfaces access meeting scheduling
application objects by directly invoking methods on those (perhaps remote)
objects. (A later portion of this document revisits this assumption.) The most
obvious solution is the use of a facade that serves as an API class [GHJ&V, pp.
pp.185-193].

Meeting

attendees: employeeId[]
name: String

Scheduled

endTime: Date

Meeting

startTime: Date

Figure 4: An initial group of classes.

Room

capacity: int
location

Room

endTime : Date

Assignment

startTime: Date
© 1999-2007 by Objective Engineering, Inc. Page 14

Figure 5 depicts that facade class. For now, assume that this class is used only
to create, alter, and remove meeting definitions. The class defines a method for
each of the meeting definition use cases (Define Meeting, Add Attendee, Remove
Attendee, Remove Meeting). Although Figure 5 omits the full signatures of
those methods, the parameters of each are outlined in the use case
specifications in the requirements model. The defineMeeting method, for
example, takes as arguments the name of the meeting and a list of employee
identifiers that indicate the attendees of the meeting.

Note: As a general object-oriented design guideline, you should avoid
the use of “god classes” that act as centralized controllers [Riel, pp.32-
36]. Furthermore, each class should be cohesive in that it has just one
general responsibility. At first blush, a facade class, such as the Meeting
Administration class, may appear to violate both of these guidelines, and
indeed you may suffer a temptation to dump controlling behavior in a
facade. A properly conceived facade, however, merely forwards requests
to the proper underlying instances, and is therefore neither incohesive
nor a god object.

The precondition of the Define Meeting use case is that a meeting of the
specified name must not already exist. This implies that some object must be
able to search for a Meeting using a meeting name as a key. The Meeting
Administration is the obvious instance in which to place this responsibility,
resulting in the qualified association shown in Figure 6.

Once the Meeting Administration instance verifies that no Meeting with the
specified name already exists, it creates the new Meeting instance. (You might
delegate the responsibility to create Meetings to another entity, such as a
Meeting Factory, but that entity is not included at this level of the design.)
Because a Meeting maintains its attendee list as a set of employee identifiers,
that physical implementation is reflected in the design. In a logical design, the
Meeting class has a one-to-many association with the Employee class, and the

Meeting

defineMeeting()

Administration

addAttendee()

Figure 5: The Meeting Administration facade class.

removeAttendee()
removeMeeting()

Meeting
Administrator
© 1999-2007 by Objective Engineering, Inc. Page 15

employee identifier is an attribute of that latter class. Because the Employee
interface class is a part of the Employee Management component, however, and
because that component locates Employees using employee identifiers as keys,
this design does not employ that logical representation.

The postconditions of the Define Meeting use case are that a Meeting instance
must be created, and that its attendees must include the set of attendees
specified by the user. Both are achieved by creating (and retaining) an instance
of the Meeting class that appears in Figure 6. Figure 7 depicts a scenario for
defining a meeting. The Meeting Administration instance must attempt to find
an existing Meeting instance with the specified name, although the mechanism
employed to conduct that search is not included in the figure.

The Add Attendee and Remove Attendee use cases alter the attendee list of an
existing Meeting. Recall that Inform of Meeting extends Add Attendee, meaning
that when an employee is added as an attendee of a Meeting, he or she must be
informed of any future Scheduled Meetings for that Meeting. Figure 8 contains
a sequence diagrams for the simplest scenario for adding an attendee — the
case where no future Scheduled Meetings exist for this Meeting. The sequence
diagram requires that an addAttendee method be introduced in the Meeting
class. (The Meeting Administration facade class already has addAttendee and
removeAttendee methods, and it has an association with the Meeting class.
These features are also required by the sequence diagrams for adding and
removing attendees.)

Meeting

defineMeeting()

Administration

addAttendee()

Figure 6: Locating a Meeting using a meeting name.

removeAttendee()
removeMeeting()

Meeting

attendees: employeeId[]
name: String

meeting
Name

0..1

Meeting
Administrator
© 1999-2007 by Objective Engineering, Inc. Page 16

The Inform of Meeting use case extension occurs if the Meeting has future
Scheduled Meetings. To determine whether this condition holds, each Meeting
instance must maintain a list of those Scheduled Meetings. Furthermore, either
the Meeting or its Scheduled Meetings must inform the attendee. If a Meeting
assumes that responsibility, then it must query its Scheduled Meetings for their
periods (i.e., their starting and ending times). If a Scheduled Meeting performs
that task, then it must obtain the meeting name (by retaining that information,
by querying its Meeting to obtain the name, or by receiving the meeting name as
a parameter to its addAttendee method).

defineMeeting(name, attendeeList)

new

: Meeting

: Meeting

Administration

Figure 7: A meeting definition scenario.

: Meeting
Administrator

name = name
attendees =
 attendeeList

addAttendee

addAttendee(employeeId)

: Meeting

: Meeting

Administration

Figure 8: The simplest scenario for adding an attendee.

: Meeting
Administrator

name =
 meetingName

 (meetingName, employeeId)
© 1999-2007 by Objective Engineering, Inc. Page 17

Neither option is obviously superior to the other. In this design, the
responsibility to inform attendees is assigned to Scheduled Meeting instances.
Figure 9 includes the required additions to the class diagram. The meeting
name and attendee list are retained in each Scheduled Meeting as well as in the
Meeting. (The latter is not required here, but will be required when canceling a
Scheduled Meeting.) The addAttendee method is added to both classes, and a
Meeting retains an ordered list of its Scheduled Meetings. A Scheduled Meeting
must use the Post Office and Employee Management packages to obtain
addresses and send electronic mail.

Recall from Figure 3 that the Employee Management and Post Office packages
have facade classes of the same name that provide access to the package. How
does a client, such as a Scheduled Meeting instance, obtain a reference to those
facade objects? Although not depicted in Figure 3, the Employee Management
and Post Office classes are implemented using the Singleton pattern [GHJ&V,

Meeting

defineMeeting()

Administration

addAttendee()

Figure 9: Extending the class diagram for the Inform of Meeting use case.

removeAttendee()
removeMeeting()

Meeting

attendees: employeeId[]
name: String

meeting
Name

0..1

Meeting
Administrator

attendees: employeeId[]

Scheduled Meeting

endTime: Date

Post Office

«component»
Employee

Management

*
{ordered by startTime}

«imports»

«imports»

addAttendee(employeeId)

addAttendee(employeeId)

meetingName: String
startTime: Date
© 1999-2007 by Objective Engineering, Inc. Page 18

pp. 127-134]. To obtain access to the single instance of either class, a client
calls the instance class method, which returns a reference to that single
instance.

The collaboration diagram in Figure 10 illustrates a scenario in which an
attendee is added to a Meeting with one Scheduled Meeting. When a class
method is invoked, the class itself can be included in a collaboration or
sequence diagram. As a result, the figure includes the Post Office and
Employee Management classes as well as the single instance of each. Recall
also that PostOffice::PostOffice refers to the Post Office class in the Post Office
package, and so the Post Office class and its instance in the diagram are
obtained from that package. The figure uses the package notation to depict
explicitly that the Employee Management and Employee types are defined in the
Employee Management package.

The behavior of the Remove Attendee use case is analogous to that of Add
Attendee. Although not included here, the interaction diagrams for removing an
attendee from a Meeting with no future Scheduled Meetings, and from a Meeting
with one future Scheduled Meeting, are very similar to the diagrams in Figures
8 and 10. The major difference is that a removeAttendee method (rather than
the addAttendee method) must be invoked in the Meeting and Scheduled
Meeting instances. Figure 11 contains a class diagram with those additions.

If the last attendee is removed from a Meeting, the Meeting must cancel its
Scheduled Meeting instances for which the start times are in the future. This
implies that the Scheduled Meeting class must include a cancel instance
method that releases the Room assigned to that instance. Figure 11 includes
the cancel method. The details of how it releases a Room are deferred until the
discussion of the Cancel Meeting use case.

The Remove Meeting use case removes a meeting definition from the system. If
that meeting is scheduled to be held anytime in the future, however, those
future meetings must be canceled. It might be best to postpone consideration of
this use case until the Schedule Meeting use case is analyzed. The Schedule
Meeting use case in turn uses the Schedule Room use case, so perhaps the
most prudent course at this point is to design the scheduling of a room.

Unlike the use cases already considered, the Schedule Room use case is
invoked by an instance of the Scheduler actor. (This actor represents a person
playing the role of a meeting or room scheduler — that is, someone requesting
the scheduling of a meeting or room.) The Scheduler and Room Administrator
actors will be implemented as distinct graphical user interfaces. To increase
cohesion and reduce coupling, therefore, a separate facade class is presented to
each.
© 1999-2007 by Objective Engineering, Inc. Page 19

1: addAttendee

1.1: addAttendee(114763)

: Meeting

: Meeting

Administration

Figure 10: A more complicated scenario for adding an attendee.

: Meeting
Administrator

name =
 meetingName

 (meetingName, 114763)

: Scheduled
Meeting

1.1.1: addAttendee(114763)

«component»
Employee Management

em : Employee
Management

anEmployee
: Employee

1.1.1.2: employee(114763)

1.1.1.5: deliverMessage

po
: PostOffice

anEmployee

1.1.1.3: address()

theAddress

 (theAddress, msg)

Employee
Management

1.1.1.1: instance()

em

PostOffice
::PostOffice

::PostOffice

1.1.1.4: instance()
po
© 1999-2007 by Objective Engineering, Inc. Page 20

The Facilities Scheduler facade is used by a Scheduler actor to schedule
meetings and rooms, as well as to cancel meetings and room assignments. It
therefore requires methods for those four tasks. Figure 12 depicts the facade
class. Although they not specified in the figure, the signatures of those methods
are as stated in their corresponding use case specifications. For example, the
scheduleMeeting method takes a room size and a time period as arguments
and returns a room number. (It may also throw an exception if no room of that
size is available during that period.)

Meeting

defineMeeting()

Administration

addAttendee()

Figure 11: Extending the class diagram to handle removing attendees.

removeAttendee()
removeMeeting()

Meeting

attendees: employeeId[]
name: String

meeting
Name

0..1

Meeting
Administrator

Post Office

«component»
Employee

Management

*
{ordered by startTime}

«imports»

«imports»

addAttendee(employeeId)
removeAttendee(employeeId)

attendees: employeeId[]

Scheduled Meeting

endTime: Date

addAttendee(employeeId)

meetingName: String
startTime: Date

cancel()
removeAttendee(employeeId)
© 1999-2007 by Objective Engineering, Inc. Page 21

To handle the management and scheduling of Rooms, this design includes a
Room Pool class. The Room Pool class is a singleton — a single instance of it
will exist during system execution. (The Facilities Scheduler facade may also be
a singleton; alternatively, each Scheduler actor might be linked to a distinct
facade instance.) The Room Pool maintains a list of Room instances organized
by room size. It provides methods to schedule a Room of a given size for a given
period, and to release a Room of a specified room number during a specified
period.

Recall that a postcondition of the Schedule Room use case states that the
smallest available room of sufficient size must be assigned. To schedule a
Room, the Room Pool iterates over all the Rooms that are at least as large as the
requested size, starting with the smallest and proceeding in size order. It asks
each Room to schedule itself during the specified period. If a Room indicates
that it has scheduled itself, the Room Pool returns that room number.

To schedule itself, a Room must maintain a list of its Room Assignments. As it
schedules itself, it adds a new Assignment. (How and when Assignments are
removed is ignored here.) The class diagram in Figure 13 illustrates the various
features required for this use case.

Figure 14 contains a collaboration diagram in which a room is scheduled
successfully. The diagram omits the details of how a Room checks its Room
Assignments. In this scenario, the second Room checked by the Room Pool is
available. The Pool then obtains the Room’s location (room number 604) and
returns that to the facade, which in turn returns it to the actor instance.

When no Room is available, the Room Pool must raise an error condition. In
languages that provide support for exceptions (such as C++ and Java), the
Room Pool’s scheduleRoom method could throw an exception that (most likely)
will be passed through the Facilities Scheduler to the actor. The Scheduler
actor will catch the exception and display an appropriate message. (Recall that

Facilities

scheduleMeeting()

Scheduler

scheduleRoom()

Figure 12: The Facilities Scheduler facade class.

cancelMeeting()
releaseRoom()

Scheduler
© 1999-2007 by Objective Engineering, Inc. Page 22

the two actors will be implemented as presentation interfaces, such as graphical
user interfaces.) In languages without an exception mechanism, a simple hack
is to return a negative (or otherwise illegal) room number. A more elegant
approach is to return an object that contains an indication of success (or
failure) and, in the case of success, the assigned room number.

The Schedule Meeting use case, given a meeting name and a time period, must
attempt to schedule the specified meeting for the specified time. The
scheduleMeeting method in the Facilities Scheduler facade must first obtain
access to the Meeting instance with the specified name. Recall that the Meeting
Administration facade object maintains a list of Meetings qualified by meeting
name. One possible way to provide this access, therefore, is through the
definition of a meeting method in that facade that, given a meeting name,
returns a reference (or pointer) to a Meeting instance. This is a simple solution,
although it has one potentially negative side: that interface is available to all
clients of the Meeting Administration facade, including the Meeting
Administrator actor class. This disadvantage seems rather harmless, however,
and so that solution is adopted here.

Facilities

scheduleMeeting()

Scheduler

scheduleRoom()

Figure 13: The class diagram for scheduling a room.

cancelMeeting()
releaseRoom()

Scheduler

Room

capacity: int
location

Room

endTime : Date

Assignment

startTime: Date

*

{ordered by size}

location()
schedule(startTime,
 endTime) : boolean

Room Pool

scheduleRoom
 (size, startTime,
 endTime) : int

{1}

1

*

{ordered by startTime}
© 1999-2007 by Objective Engineering, Inc. Page 23

(An alternative solution is to provide two facades for meeting administration.
One, the existing Meeting Administration facade, is available externally and
provides the methods required by the Meeting Administrator actor. The other,
available to the Facilities Scheduling facade, provides the method interfaces
required by that facade.)

After obtaining a Meeting reference, the Facilities Administration instance asks
the Meeting to schedule itself for the specified time period. The Meeting must
use the Room Pool to (attempt to) schedule a Room, after which it must create a
Scheduled Meeting instance. As the final step, that Scheduled Meeting instance
must inform the attendees of the meeting.

1: scheduleRoom

1.1: scheduleRoom(10, startTime, endTime)

: Facilities
Scheduler

Figure 14: A scenario for scheduling a room.

 (10, startTime, endTime)

1.1.1: schedule(startTime, endTime)

false

Scheduler

: Room
Pool

r312
: Room

r604
: Room

1.1.2: schedule(startTime, endTime)

1.1.2: true

1.1.3:

1.1.3: location()

 604

604

604

: Room

{new}

Assignment

endTime = endTime
startTime = startTime

1.1.2.1: new
© 1999-2007 by Objective Engineering, Inc. Page 24

To achieve the latter behavior, the general approach introduced in Figures 9 and
10 can be used — a Scheduled Meeting informs attendees about the meeting.
This implies that when it is created, a Scheduled Meeting is given a list of
attendee employee identifiers; it iterates through that list, informing each
attendee of the meeting and its location. This in turn implies that a Scheduled
Meeting must be linked to the Room to which it is assigned. (Such a link is also
required so that a Scheduled Meeting can release its Room when is canceled.)

Because a Scheduled Meeting must be linked to its Room, and because the
Room Pool returns the room number of the assigned Room, the Pool must
provide a method (call it room) that, given a room number, returns the Room
with that number. The class diagram in Figure 15 contains the various features
required to handle this use case.

The collaboration diagram in Figure 16 illustrates the object interactions for a
simple scheduling scenario. The diagram ignores the details of how the Room
Pool schedules the Room, which is the behavior of the Schedule Room use case.
A scenario of that use case is depicted by the collaboration diagram in Figure
14. Its presence in the Schedule Meeting use case is due to the fact that the
Schedule Meeting use case «uses» (or «includes») the Schedule Room use
case.)

In the Release Room use case, a Scheduler actor instance invokes the Facilities
Scheduler facade’s releaseRoom method, specifying a room number and a time
period. The facade object forwards that request to the Room Pool. The Room
Pool then looks up the Room with the specified room number and asks that
Room to release itself for the specified period. The class diagram Figure 17
contains the additional methods required to handle this use case.

The steps for canceling a meeting are somewhat similar to those for scheduling
a meeting. The Meeting must be located, after which it is asked to cancel itself
during the specified period. The Meeting class therefore requires a cancel
instance method. The Meeting object locates the appropriate Scheduled
Meeting instance and invokes its cancel method (thus requiring a cancel
method in that class). The Scheduled Meeting instance in turn invokes the
release method in its Room.

Figure 18 contains the final class diagram. The only properties absent from
that diagram are a Scheduled Meeting’s association with the external Post Office
and Employee Management packages (or, to be more specific, with the Post
Office and Employee Management facade classes in those packages). The
dynamic model for the system includes the interaction diagrams described in
this document, as well as others that have not been included here.

The classes in a system can be grouped into logical units such as subsystems
and layers. A group of classes is represented as a package in a UML class
diagram. The classes in Figure 18, for example, could be organized into
© 1999-2007 by Objective Engineering, Inc. Page 25

Facilities

scheduleMeeting()

Scheduler

scheduleRoom()

Figure 15: The class diagram for scheduling a meeting.

cancelMeeting()
releaseRoom()

Scheduler

Room

capacity: int
location

*
{ordered by size}

location()
schedule(startTime,
 endTime) : boolean

Room Pool

scheduleRoom
 (size, startTime,
 endTime) : int

{1}

1
Meeting

defineMeeting()

Administration

addAttendee()
removeAttendee()
removeMeeting()

Meeting

attendees: employeeId[]
name: String

meeting
Name

0..1

addAttendee(employeeId)
removeAttendee(employeeId)

meeting(name) :
 Meeting

room(roomNumer) :
 Room

room
Number

0..1

schedule(startTime, endTime) :
 boolean

1

1

1

*

{ordered by startTime}

attendees: employeeId[]

Scheduled Meeting

endTime: Date

addAttendee(employeeId)

meetingName: String
startTime: Date

cancel()
removeAttendee(employeeId)
© 1999-2007 by Objective Engineering, Inc. Page 26

packages that define general functional areas, such as meeting management
and room management. The meeting classes would reside in the package for
the former, whereas the room classes would belong to the latter.

Security Issues

This solution ignores certain security issues, such as guaranteeing that only the
client who scheduled a meeting or room can cancel that assignment. This
guarantee could be implemented by associating a token with each assignment

1: scheduleMeeting

1.1: meeting(name)

: Facilities
Scheduler

Figure 16: A scenario for scheduling a meeting.

 (name, startTime, endTime)

1.2: schedule(startTime, endTime)

604

Scheduler

rp : Room
Pool

r604
: Room

m

604

: Meeting
Administration

m
: Meeting

Room
Pool

1.2.1:
rp instance()

1.2.2: scheduleRoom
 (name, startTime, endTime)

1.2.2: 604

1.2.3: room()

1.2.3: 604

{new}

: Scheduled

{new}

Meeting

endTime = endTime
startTime = startTime

1.2.4: new
© 1999-2007 by Objective Engineering, Inc. Page 27

(and returning that token to the client when the assignment is made), and then
requiring that a client present the token when canceling the meeting or room. A
disadvantage of this approach is that the client must retain the token. What if
an individual who schedules a meeting from one client machine subsequently
attempts to cancel that meeting from a different machine? This requires some
mechanism (such as a token database) that permits tokens to be accessed from
any client machine.

Perhaps a superior approach is to associate with each assignment an indication
of who requested the assignment. An obvious candidate is the user name
provided by the person when logging onto the system. This allows individuals to
work from any client machine and requires only that a person exhibit the same
user name each time he or she uses the system.

Facilities

scheduleMeeting()

Scheduler

scheduleRoom()

Figure 17: The class diagram for releasing a room.

cancelMeeting()
releaseRoom()

Scheduler

Room

capacity: int
location

*

{ordered by size}

location()
release(startTime,
 endTime) : boolean

Room Pool

scheduleRoom
 (size, startTime,
 endTime) : int

{1}

1

room(roomNumer) :
 Room

room
Number

0..1

releaseRoom
 (roomNumber,
 startTime, endTime)

schedule(startTime,
 endTime)
© 1999-2007 by Objective Engineering, Inc. Page 28

Facilities

scheduleMeeting()

Scheduler

scheduleRoom()

Figure 18: The final class diagram.

cancelMeeting()
releaseRoom()

Scheduler

Room

capacity: int
location

*
{ordered by size}

location()
schedule(startTime,
 endTime) : boolean

Room Pool

scheduleRoom
 (size, startTime,
 endTime) : int

{1}

1
Meeting

defineMeeting()

Administration

addAttendee()
removeAttendee()
removeMeeting()

Meeting

attendees: employeeId[]
name: String

meeting
Name

0..1

addAttendee(employeeId)
cancel()

meeting(name) :
 Meeting room(roomNumer) :

 Room

room
Number

0..1

removeAttendee(employeeId)
schedule(startTime, endTime) :

1

1

1

* {ordered by startTime}

attendees: employeeId[]

Scheduled Meeting

endTime: Date

addAttendee(employeeId)

meetingName: String
startTime: Date

cancel()
removeAttendee(employeeId)

 boolean

Room

endTime : Date

Assignment

startTime: Date

{ordered by startTime} *
© 1999-2007 by Objective Engineering, Inc. Page 29

Revisiting the RMI-Based Approach

This design, and particularly its use of facade interfaces, assumes that client
(GUI) interfaces use remote method invocations (RMIs) to interact with objects
in the meeting scheduling application domain. Suppose, however, that you opt
instead for a browser-based interface using HyperText Transfer Protocol (HTTP)
requests. This section explores how such a decision would affect the design.

In an HTTP-based solution, a client interface (such as a browser) interacts with
an application by issuing an HTTP request. A web server on the application
machine receives the request and dispatches it to a server-side entity, such as a
Java servlet or a CGI script, responsible for processing such requests. A typical
design has one web page for each use case initiated by an actor (as well as a
“home page” presented when the actor first initiates the application). Each web
page in turn might be associated with one servlet or CGI script that handles
requests for that page.

For browser-based clients of the meeting scheduling application, you replace
the (RMI-oriented) facades with a servlet-based or CGI-based approach. Figure
19 depicts a portion of a class diagram for the former. The two dependencies in
the diagram indicate that each actor will interact with the application through
HTTP requests. A web server (not depicted in the diagram) receives each
request and forwards it to the appropriate servlet. The “stacking” of the two
servlet classes, as well as the generic names of those two classes, are meant to
indicate that several scheduling servlets and administration servlets, the
specifics of which have yet to be specified, will be a part of this design.

What specific servlets will you have? In general, each use case initiated by an
actor maps to a servlet. Hence, the Scheduler and Meeting Administrator actors
interact with servlets that correspond to the use cases initiated by those actors
in Figures 2a and 2b. (Those servlets may actually be implemented as

Scheduler
«servlet»

Scheduling
Servlet

«HTTP connection»

Meeting
Administrator

«servlet»
Adminstration

Servlet

«HTTP connection»

Figure 19: A part of a class diagram for HTTP-based interactions.
© 1999-2007 by Objective Engineering, Inc. Page 30

JavaServer Pages. Additionally, you might use one or more JSPs to present the
results of each servlet request. A discussion of the detailed design of servlets
and JSPs for this application is beyond the scope of this paper.)

Each servlet might in turn interact with objects in the application domain.
Those dependencies appear as normal associations in a UML class diagram.
Figure 20 depicts the specific servlet for the Schedule Room use case. Like the
Facilities Schedule facade in the previous design, the servlet for this use case
interacts with the Room Pool instance to schedule a room. The structure of the
Room Pool class is identical to that of the Room Pool class in the previous
design. (Figure 20 omits the Room Pool’s relationship with Room instances.)

References

[GHJ&V] E. Gamma, R, Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Riel] A. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.

Trademarks

Java and JavaServer are registered trademarks of Sun Microsystems. Inc.

Scheduler
«HTTP connection» «servlet»

Schedule
Room Servlet

Figure 20: A part of a class diagram for one scheduling servlet.

Room Pool

scheduleRoom
 (size, startTime,
 endTime) : int

{1}
1

© 1999-2007 by Objective Engineering, Inc. Page 31

	A Meeting Room Scheduling Problem
	Objective Engineering, Inc.
	699 Windsong Trail Austin, Texas 78746 512-328-9658 FAX: 512-328-9661 ooinfo@oeng.com http://www....
	© Objective Engineering, Inc., 1999-2007.
	Photocopying, electronic distribution, or foreign-language translation of this document is permit...

	Part I: The Problem
	Design a system to schedule meetings and meeting rooms. A user can use this system simply to requ...
	A user can cancel any scheduled meeting or any room assignment up until the point at which the me...
	When a meeting is scheduled, an electronic message about that meeting must be sent to each attend...
	A user must also be able to define or alter a meeting. When defining the meeting, the user provid...
	Assume the existence of a Post Office package that contains Post Office and Address classes. The ...
	deliverMessage(recipient : Address, message : String). It delivers the specified message to the s...
	Assume the existence of an Employee Management package that defines an employee management compon...
	employee(employeeNumber : integer) : Employee. Given an employee number, this method returns as t...
	The Employee interface defines the (abstract) methods:
	address() : Address. This method returns the electronic mail address of the employee.
	name() : String. This method returns the name of the employee.
	Part II: A Solution
	The meeting scheduling problem describes a system that schedules meetings and rooms. The solution...
	The requirements model includes a use case diagram using standard UML notation. To augment that d...
	The design is cast as a class diagram and a set of interaction diagrams. Additional textual descr...
	While this document describes a relatively simple meeting scheduling system, the reader may wish ...
	• Allow a user to request that a meeting be scheduled at the earliest time possible (or perhaps a...
	• Consult a personal calendar for each attendee when scheduling a meeting. An employee’s calendar...
	• Allow employees to be grouped (such as by project), and designate groups (as well as individual...
	• Maintain two lists of attendees for a meeting: those who must attend versus those whose attenda...
	• Allow a user to obtain a list of his or her meetings.
	A Requirements Model

	The meeting scheduling system has at least one type of actor: the Scheduler. Despite its name, th...
	A person playing the role of a Scheduler can perform the following functions:
	a) Schedule a particular meeting for a particular time interval;
	b) Request a room for a particular time interval;
	c) Cancel a particular meeting scheduled for a particular time; and
	d) Cancel a room assignment for a particular time.
	The Schedule Meeting, Schedule Room, Cancel Meeting, and Release Room use cases, respectively, wi...
	a) Define a meeting;
	b) Add an attendee to a meeting;
	c) Remove an attendee from a meeting; and
	d) Remove a meeting definition.
	These will be modeled by the Define Meeting, Add Attendee, Remove Attendee, and Remove Meeting us...
	Two of these use cases always use (or include) two others as a part of their behavior. Scheduling...
	What happens when a Meeting Administrator removes a meeting definition from the system, but sched...
	Likewise, if the last attendee is removed from a meeting definition, and future scheduled instanc...
	Because a Post Office instance and the Employee Management component are external software applic...
	• When defining a meeting, a Meeting Administrator specifies a list of attendees in the form of e...
	• Scheduling and canceling a meeting requires an interaction with the Post Office, as each attend...
	Figures 1a and 1b contain UML 1.1/1.2 and UML 1.3 use case diagrams, respectively, for this probl...
	The use case diagram in Figure 1 ignores some exceptional behavior that may arise during the use ...
	At least two other exceptional situations result from adding an attendee to or removing an attend...
	Consider Mary’s staff meeting, a specific meeting definition. An existing attendee of Mary’s staf...
	If the two behaviors are essentially identical, as is assumed here, then a single use case, Infor...
	Likewise, an Inform of Cancellation use case is used to inform the employee that the employee sho...
	The use case diagrams in Figures 2a and 2b are each an elaboration of one of the previous use cas...
	One way to describe the use cases in Figures 2a and 2b is by specifying each use case’s trigger, ...
	Trigger:
	• an event, defineMeeting(name, attendees: array of employeeId)
	Preconditions:
	• A meeting named name does not already exist in the system.
	Postconditions:
	• There exists a definition of this meeting, m, in the system.
	• m’s attendee list includes the attendees provided to the use case.
	The Add Attendee use case is employed to add an attendee to an existing meeting definition. The d...
	Trigger:
	• an event, addAttendee(meetingName, attendee: employeeId)
	Preconditions:
	• There exists m, a definition for a meeting named name, in the system.
	Postconditions:
	• m’s attendee list includes the attendee provided to the use case.
	• If any future scheduled instances of m exist, then apply the extension Inform of Meeting to inf...
	The Add Attendee use case is extended by the Inform of Meeting use case. That latter use case’s s...
	Trigger:
	• an internal condition, its use by Schedule Meeting or extension of Add Attendee (to inform an e...
	Preconditions:
	• none
	Postconditions:
	• an invitation to meeting m during period p is sent to the electronic mail address of the indica...
	The Remove Attendee use case removes an attendee from an existing meeting definition. Its specifi...
	Trigger:
	• an event, removeAttendee(meetingName, attendee: employeeId)
	Preconditions:
	• There exists m, a definition for a meeting named name, in the system.
	• The attendee provided to the use case is an attendee of that meeting.
	Postconditions:
	• m’s attendee list does not include the attendee provided to the use case.
	• If any future scheduled instances of m exist, then apply the extension Inform of Cancellation t...
	• If, after removing the attendee, m’s attendee list is empty, and if future scheduled instances ...
	The Remove Meeting use case removes a meeting definition from the system. Furthermore, if any sch...
	Trigger:
	• an event, removeMeeting(meetingName)
	Preconditions:
	• There exists m, a definition for a meeting named name, in the system.
	Postconditions:
	• m no longer exists in the system.
	• For any scheduled instance, d, of meeting m: cancelMeeting(d, st), where st is the scheduled st...
	The Inform of Cancellation use case extends the Remove Attendee use case. Its specification is:
	Trigger:
	• an internal condition, its use by Cancel Meeting or extension of Remove Attendee (to inform an ...
	Preconditions:
	• none
	Postconditions:
	• a retraction of the invitation to meeting m during period p is sent to the electronic mail addr...
	The Schedule Room use case schedules a room of a specified size for a specified time period. Its ...
	Trigger:
	• an event, scheduleRoom(size, timePeriod): roomNumber
	Preconditions:
	• There exists a room, r, such that r’s size is at least as large as size, and r is available dur...
	Postconditions:
	• For the smallest room, r, such that r’s size is at least as large as size and r is available du...
	The Release Room use case releases a specified room during a specified time period. The definitio...
	Trigger:
	• an event, releaseRoom(roomNumber, timePeriod)
	Preconditions:
	• The room, r, whose room number is roomNumber is not available during timePeriod.
	Postconditions:
	• The room, r, whose room number is roomNumber is available during timePeriod.
	To schedule a meeting, you employ the Schedule Meeting use case. That use case schedules a specif...
	Trigger:
	• an event, scheduleMeeting(name, timePeriod)
	Preconditions:
	• There exists a defined meeting, m, in the system such that m’s name is name.
	• There is no instance of m scheduled during timePeriod.
	Postconditions:
	• There is a scheduled instance of m during timePeriod.
	• m is assigned a room determined by scheduleRoom(size, timePeriod), where size is the number of ...
	• Each attendee of m is informed of the scheduled meeting through the Inform of Meeting use case.
	The Cancel Meeting use case cancels a specified meeting with a specified starting time. Its speci...
	Trigger:
	• an event, cancelMeeting(name, startTime)
	Preconditions:
	• There exists a defined meeting, m, in the system such that m’s name is name.
	• There is a scheduled instance of m that will start at startTime.
	Postconditions:
	• The scheduled instance, i, of m starting at startTime has been removed from the system.
	• i’s room is released using releaseRoom(roomNumer, timePeriod), where roomNumber is the room ass...
	• Each attendee of m is informed of the canceled meeting through the Inform of Cancellation use c...
	These specifications indicate exactly what each use case must accomplish and therefore can be a v...
	The Design

	You are provided a Post Office package with Post Office and Address classes. You can also assume ...
	What classes are required by the scheduling software? If you enumerate the tangible things, roles...
	Meeting. An instance of this class represents a meeting that can be scheduled again and again. It...
	Scheduled Meeting. A Scheduled Meeting is a scheduled instance of a Meeting. It has a starting an...
	Room. A Room instance models a meeting room. It has a capacity (the number of people the room wil...
	Room Assignment. An instance of this class represents the scheduling of a Room for a particular t...
	Figure 4 depicts these classes and their attributes.
	The classes in Figure 4 provide a starting point. By what process can you elaborate this design? ...
	Consider the first use case, Define Meeting. This use case is triggered when a user playing the r...
	Figure 5 depicts that facade class. For now, assume that this class is used only to create, alter...
	Note: As a general object-oriented design guideline, you should avoid the use of “god classes” th...
	The precondition of the Define Meeting use case is that a meeting of the specified name must not ...
	Once the Meeting Administration instance verifies that no Meeting with the specified name already...
	The postconditions of the Define Meeting use case are that a Meeting instance must be created, an...
	The Add Attendee and Remove Attendee use cases alter the attendee list of an existing Meeting. Re...
	The Inform of Meeting use case extension occurs if the Meeting has future Scheduled Meetings. To ...
	Neither option is obviously superior to the other. In this design, the responsibility to inform a...
	Recall from Figure 3 that the Employee Management and Post Office packages have facade classes of...
	The collaboration diagram in Figure 10 illustrates a scenario in which an attendee is added to a ...
	The behavior of the Remove Attendee use case is analogous to that of Add Attendee. Although not i...
	If the last attendee is removed from a Meeting, the Meeting must cancel its Scheduled Meeting ins...
	The Remove Meeting use case removes a meeting definition from the system. If that meeting is sche...
	Unlike the use cases already considered, the Schedule Room use case is invoked by an instance of ...
	The Facilities Scheduler facade is used by a Scheduler actor to schedule meetings and rooms, as w...
	To handle the management and scheduling of Rooms, this design includes a Room Pool class. The Roo...
	Recall that a postcondition of the Schedule Room use case states that the smallest available room...
	To schedule itself, a Room must maintain a list of its Room Assignments. As it schedules itself, ...
	Figure 14 contains a collaboration diagram in which a room is scheduled successfully. The diagram...
	When no Room is available, the Room Pool must raise an error condition. In languages that provide...
	The Schedule Meeting use case, given a meeting name and a time period, must attempt to schedule t...
	(An alternative solution is to provide two facades for meeting administration. One, the existing ...
	After obtaining a Meeting reference, the Facilities Administration instance asks the Meeting to s...
	To achieve the latter behavior, the general approach introduced in Figures 9 and 10 can be used —...
	Because a Scheduled Meeting must be linked to its Room, and because the Room Pool returns the roo...
	The collaboration diagram in Figure 16 illustrates the object interactions for a simple schedulin...
	In the Release Room use case, a Scheduler actor instance invokes the Facilities Scheduler facade’...
	The steps for canceling a meeting are somewhat similar to those for scheduling a meeting. The Mee...
	Figure 18 contains the final class diagram. The only properties absent from that diagram are a Sc...
	The classes in a system can be grouped into logical units such as subsystems and layers. A group ...
	Security Issues

	This solution ignores certain security issues, such as guaranteeing that only the client who sche...
	Perhaps a superior approach is to associate with each assignment an indication of who requested t...
	Revisiting the RMI-Based Approach

	This design, and particularly its use of facade interfaces, assumes that client (GUI) interfaces ...
	In an HTTP-based solution, a client interface (such as a browser) interacts with an application b...
	For browser-based clients of the meeting scheduling application, you replace the (RMI-oriented) f...
	What specific servlets will you have? In general, each use case initiated by an actor maps to a s...
	Each servlet might in turn interact with objects in the application domain. Those dependencies ap...
	References

	[GHJ&V] E. Gamma, R, Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object...
	[Riel] A. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.
	Trademarks

	Java and JavaServer are registered trademarks of Sun Microsystems. Inc.

