
A File Transfer Problem

Objective Engineering, Inc.

699 Windsong Trail
Austin, Texas 78746

512-328-9658
FAX: 512-328-9661
ooinfo@oeng.com

http://www.oeng.com

© Objective Engineering, Inc., 1999-2007.

Photocopying, electronic distribution, or foreign-language translation of this
document is permitted for personal and classroom use, provided this document is
reproduced in its entirety and accompanied by this notice and by its copyright.
Copies and translations may not be used or distributed for profit or commercial
advantage without prior written approval from Objective Engineering, Inc.

Part I: The Problem

You must support client applications that will release software electronically.
One part of that support is a mechanism that allows those applications to
transfer software release files to remote sites. Therefore, you must provide
software that allows a client application to transfer a specified file to a specified
destination. (The client indicates the destination by providing a site name.)

Assume that your site already has low-level file transfer protocol classes, each
instance of which interacts with one remote site. (These classes exist, so you
need not design and implement them.) Two different protocol classes exist.
One, a direct send protocol object, has the following (synchronous) public
operation:

send(f: File), transfers the file and returns a status of fileTransferred
or transferFailed.

The other is a partial send protocol. It can transfer files of up to 100KB in size.
Longer files must be transferred in pieces. To facilitate this, however, the partial
send protocol has the notion of a connection; all fragments sent between the
opening and closing of a connection are assumed to be parts of the same file. A
partial send protocol object has three public (synchronous) methods:

openConnection(filename), opens a connection to the remote site so that
a file of the stated name can be transferred, returns a status of
connectionOpen or connectionDown;

sendFilePart(file), sends a file (or portion of a file) of up to 100KB in
size, returning a status of transferSuccess or transferFailure; and

closeConnection(), informing the remote site that all parts of this file
have now been sent (and allowing that site to reconstruct the complete
file), returning a status of connectionClosed or connectionDown.

The protocol you use to send a file must match the protocol the client site is
using to receive the file. A client site may use different transfer protocols at
different times, however, and so to select the correct type of protocol, you must
query the remote site to determine what type of protocol it is currently using.
You must then create a protocol object of the appropriate type. Assume that the
constructors for the Direct Send Protocol and Partial Send Protocol classes take
the remote site’s address (such as an IP address) as an argument.

When transferring a file, each protocol object will place the transferred file in a
special directory at the remote site. You can assume that software at that site
will handle the receipt of files in that directory.

Because new protocols may by introduced in the future, you should make your
design as tolerant of new protocols as possible.
© 1999-2007 by Objective Engineering, Inc. Page 1

Your file transfer package should handle transfers at any of three priorities:
background, normal, and emergency. Files sent with emergency priority should
be sent before files with normal priority, files with normal priority before files
with background priority. Once a file is handed to a protocol object, however,
its transfer cannot be interrupted.

You should allow transfers with retry counts. In the case of transmission
errors, a transfer with a non-zero retry count will be retried that number of
times. The default retry count should be zero.

Your package should also support transfers at (or about) time t. If a client asks
to transfer a file at midnight, for example, that request should be postponed
until that time.

A client must be able to query the status of a transfer. Possible status values
include pending, in progress, completed successfully, and completed
unsuccessfully. In addition, a client must be able to cancel a pending transfer.
(An attempt to cancel a transfer that is no longer pending, however, should be
ignored.)

You can support broadcasts to multiple sites, but you need not do so. (This
feature is on someone’s wish list.) If you permit this, you must determine how
you will handle the status of the transfer (because the file may have been
transferred to some sites but not to others) and the notification (such as
whether a single notification or multiple notifications are sent).
© 1999-2007 by Objective Engineering, Inc. Page 2

Part II: A Solution

The document contains a description of a file transfer facility. This facility
permits client programs to transfer files to remote sites that employ different
transfer protocols. It allows a client to specify a priority, a retry count, and a
time at which to start the transfer. In addition, a client can cancel a pending
transfer request, and can query the status of a transfer request.

The solution presented here includes a model of functional requirements and a
design. The functional requirements are defined in terms of a use case diagram
and textual descriptions of each use case. The requirements model also
includes an activity diagram for the most complicated use case, the transfer of a
file.

The design is cast as a class diagram and a set of interaction diagrams.

A Requirements Model

A client program can make three types of requests:

a) It can request that a file be transferred;

b) It can query the status of a transfer; and

c) It can cancel a pending transfer.

Several variations of the first use case exist based on the arguments supplied by
the client. For example, a client can specify a retry count, a particular time at
which to send a file, etc. That single use case represents the entire transfer
process, and so it includes several possible outcomes (the file is transferred
successfully, the transfer fails, and the transfer is canceled).

A client program and a remote site are the two types of actors in this system.
Figure 1 contains an initial use case diagram for this problem.

The textual descriptions of these use cases are:

Request Transfer. The client program requests that a specific file be
transferred to a specific remote site. The client may include a priority, a
retry count, and a subsequent time at which to transfer the file. The file
is transferred to the remote site.

Query Transfer Status. The client program requests the current status of a
specific transfer. The client is returned an indication of whether the
transfer is pending, in progress, or has completed successfully or
unsuccessfully.

Cancel Transfer. The client program asks that a specific transfer be
canceled. If the transfer is pending, it must be canceled.
© 1999-2007 by Objective Engineering, Inc. Page 3

To clarify the details of the Request Transfer use case, you can model that
function with an activity diagram. Figure 2 contains such a diagram. As the
figure indicates, the initial activity in the use case is the creation of the request
itself. In particular, your transfer facility must create an internal representation
of the client’s request.

If the file is to be transferred now, the request is immediately queued by the
Queue Request activity. Conversely, if the file should be transferred later, the
transfer is delayed. The Delay Request activity is simply a “waiting” activity.
While located in this activity, the request will age until either its transfer time is
reached, in which case it is queued by the Queue Request activity, or until it is
canceled (by an application of the Cancel Transfer use case).

When the request reaches the head of the (logical) transfer queue, it is
transferred by the Transfer File activity. This activity includes the selection of
the protocol and the actual transfer itself. Observe that both the Delay Request
and Queue Request activities will complete in the “request is canceled” state
when the Cancel Request use case is invoked during those activities.

The Design

First, consider the interface to be provided to client programs. What type of
interface should you provide? Assume that the client is to use direct remote
method invocations rather than an application protocol, such as the HyperText
Transfer Protocol (HTTP). (A later portion of this document will revisit that
assumption.) You must therefore design a direct interface through which a
client can initiate, query, and cancel transfers.

Request

Figure 1: A use case diagram for file transfer.

Transfer

Query
Transfer

Cancel
Transfer

Client

Remote

File Transfer Facility

Site

Status
© 1999-2007 by Objective Engineering, Inc. Page 4

One possible interface is a facade [GHJ&V, pp.185-193] that offers all the
capabilities required by a client. The File Transfer Facility facade class provides
methods to request a transfer, check on the status of a transfer, and cancel a
transfer. When a client program issues a transfer request, the facade must
return an identifier for that request. The client can subsequently use that
identifier to check and cancel the request. A File Transfer Facility facade class
is shown in Figure 3.

Figure 2: An activity diagram for the Request Transfer use case.

Queue
Request

Create
Request

Delay
Request

[transfer time is later]

[transfer time is now]

Transfer
File

[transfer was successful]

[transfer failed]

[more retries]

[no more retries]

[request is at head of queue]

[request is canceled] [request is canceled]
© 1999-2007 by Objective Engineering, Inc. Page 5

The transferFile method in the File Transfer Facility class must be
overloaded to include variants for all combinations of parameters a client may
provide. While these variants are absent from Figure 3, the client must be able
to specify any combination of a time at which to send the file, a priority, and a
retry count.

A minor disadvantage of the facade class is the need to create and maintain an
identifier for each transfer. Because a client may query the status of a request
at any time, furthermore, the facade must maintain persistent information
about the success or failure of a completed transfer.

As an alterative to the File Transfer Facility facade, you could provide the client
with a File Transfer Request class. To initiate a transfer request, a client
creates a File Transfer Request instance and invokes its execute method. A
File Transfer Request object also has methods to query its status and to cancel
it. This class is depicted in Figure 4.

File Transfer Facility

transferFile(...): transferId
queryTransferStatus
 (transferId): Status

Facade
facade

Figure 3: A File Transfer Facility facade class.

cancelTransfer(transferId)

Client

* 1

Client

File Transfer

cancel()

fileName*1

site

execute()

Figure 4: The File Transfer Request class.

Request

priority
retryCount
sendTime

queryStatus()
 : Status
© 1999-2007 by Objective Engineering, Inc. Page 6

The File Transfer Request class is Figure 4 is an application of the Command
design pattern [GHJ&V, pp. 233-242]. In this pattern, a request is treated as an
object that encapsulates the state and behavior required to carry out the
request. As a result, the invoker of the request need not know anything about
how the request is effected. In this case, however, the request is a long-lived
action (something similar to a transaction) in that the overall execution of the
request (i.e., the interval from the initial request to the actual transfer of a file)
may span several hours.

Aside from the actual interface provided to client programs, the designs with a
facade and with a File Transfer Request class are very similar. In each case, a
separate thread or process must carry out the transfer. (Otherwise, the client
will be blocked until the request completes.) In a design based on the File
Transfer Request class, a Request instance must somehow initiate such a
process or thread.

Figure 5 shows one way in which that initiation can be handled. The figure is
an elaboration of Figure 4 that includes a File Transfer Execution class. An
instance of this class will run as a separate process or thread and will carry out
the actual transfer. The double-headed association indicates the need for an
Execution to communicate status information back to its Request. For
example, when a transfer has completed, the Execution for that transfer must
inform its File Transfer Request of the final resolution of the transfer. The
actual communication mechanism between the two must be tolerant of the
disappearance of the object on either side. (That is, a File Transfer Request
should not fail when issuing a request to a File Transfer Execution that has
disappeared, and vice versa.)

Client

File Transfer

cancel()

fileName*1

site

execute()

Figure 5: The File Transfer Request class.

Request

priority
retryCount
sendTime

queryStatus()
 : Status

File Transfer

start()

fileName
site

stop()

Execution

priority
retryCount
sendTime

queryStatus()
 : Status

1 1
© 1999-2007 by Objective Engineering, Inc. Page 7

The disadvantage of the solution in Figure 5 is that each transfer requires a
separate thread or process. For the most part, however, each such process or
thread is simply awaiting its turn to be transferred. As an alternative, you
could have the File Transfer Request ask a central agent to post the transfer
request. That agent would provide methods to post, cancel, and query the
status of a request. This is exactly the functionality provided by the File
Transfer Facility facade in Figure 3!

The design described from this point forward employs the facade class in Figure
3, as well as the following classes identified using abstraction:

File Transfer Request. Unlike the class of the same name in Figures 4 and 5,
an instance of this class is created by the File Transfer Facility facade
class when a client asks to transfer a file. The instance holds the
relevant information about the request.

Transfer Queue. This is a priority-ordered queue that holds the File
Transfer Request instances. Entries are added to the Transfer Queue by
the File Transfer Facility facade.

File Transfer Agent. An instance of this class takes File Transfer Requests
from the front of the Transfer Queue and executes those transfers. The
instance runs as a separate process. If you desire to execute multiple
transfers concurrently, this instance could include several threads, each
of which is executing one transfer.

Protocol Factory. The File Transfer Agent uses an instance of this class to
create the appropriate Protocol object for a specified remote site.

When asked to transfer a file, the File Transfer Facility must create a File
Transfer Request instance that describes the transfer request, after which it
must place that Request object on the Transfer Queue. The Transfer Queue
orders its entries by priority. It might be implemented as a single Queue or a
triad of internal Queues, one for each priority level. (Alternatively, you could
have a Queue for each remote site, but this permits unusual transfer sequences
in situations where one site has only low-priority or normal-priority transfers in
its Queue whereas another site has several requests queued at emergency
priority.)

Figure 6 depicts the File Transfer Request class and its relationship with the
Request Queue class. The File Transfer Facility maintains a list of File Transfer
Request objects keyed by a transfer identifier. (This identifier is returned to the
client program when the Request is created.) The File Transfer Facility then
uses the Queue’s addEntry method to add the Request to the Queue. If the
client subsequently cancels the transfer, the facade will invoke the Queue’s
removeEntry method to (attempt to) remove that Request from the Queue.
© 1999-2007 by Objective Engineering, Inc. Page 8

Note that when it creates a File Transfer Request with a later transfer time, the
File Transfer Facility does not immediately add that Request to the Queue.
Rather, it starts a timer that will expire at the desired transfer time. When the
timer expires, the facade (or a helper object) adds the Request to the Queue.
The mechanism to achieve this timing is not depicted in Figure 6.

Figure 7 contains a collaboration diagram for a scenario in which a client issues
a request to transfer file named foo to a site called “JoesBar.” The File Transfer
Facility creates a File Transfer Request instance with transfer identifier 03175,
then places that Request object on the Request Queue (with normal priority).

How does the actual transfer described by a File Transfer Request instance
occur? An instance of the File Transfer Agent class is responsible for enacting
the transfer. When that instance is ready to conduct the next transfer (perhaps
when the previous transfer has completed), it removes the File Transfer Request
that occupies the head of the Request Queue (by invoking the Queue’s
firstEntry method), then carries out that request. Figure 8 includes the File
Transfer Agent class. As noted above, an Agent runs as a separate process (as
indicated by the bold box and «process» stereotype in the figure) and could
have multiple threads if you wish to permit multiple concurrent transfers.

Figure 6: The File Transfer Request and Request Queue classes.

File Transfer

fileName
site

Request

priority
retryCount
sendTime

queryStatus()
 : Status

addEntry
 (FileTransferRequest,

Transfer Queue

 priority)
removeEntry
 (FileTransferRequest)
firstEntry()
 : FileTransferRequest

status

File Transfer Facility

transferFile(...): transferId
queryTransferStatus
 (transferId): Status
cancelTransfer(transferId)

transferId

1

1 *{ordered}
© 1999-2007 by Objective Engineering, Inc. Page 9

The File Transfer Agent will use a Protocol Factory object to obtain the
appropriate Protocol object for a Transfer Request. Figure 9 contains a class
diagram for the design to this point. Still pending in this discussion is the
definition of the Protocol Factory and the Protocol classes.

Recall that the two existing Protocol classes have different interfaces. The
Direct Send Protocol class has a single sendFile method, whereas the Partial
Send Protocol class defines three methods required to send a single file. To
provide a uniform interface for both classes (or, put another way, to isolate the
differences in these interfaces), you can apply the Adapter design pattern
[GHJ&V, pp. 139-150].

An object adapter is placed atop each specific Protocol instance. That adapter,
an instance of the Partial Send Adapter or Direct Send Adapter class, offers a
uniform interface, a transferFile method that takes a file as an argument and
returns the status of the transfer. The Partial Send Adapter and Direct Send
Adapter classes define the translation from that interface to the methods

: Client

Figure 7: A collaboration diagram depicting the creation of a Request.

: File
Transfer
Facility

: Request
Queue

1: transferFile(“foo”, “JoesBar”)

1.1: new(...)
1.2: addEntry(req, NORMAL)

03175

{new}

03175

fileName = “foo”

req : File
Transfer
Request

{new}

site = “JoesBar”
priority =
 NORMAL
retyCount = 0
© 1999-2007 by Objective Engineering, Inc. Page 10

provided by Partial Send Protocol and Direct Send Protocol, respectively. For
example, when you invoke transferFile in a Direct Send Adapter, it will call
sendFile in its underlying Direct Send Protocol instance.

Both adapter classes are derived from a common File Transfer Protocol interface
class that defines the common method interface, transferFile. The adapter
classes and the interface class are illustrated in Figure 10. Recall that an
interface class (that is, a class with the «interface» stereotype) contains only
public, abstract methods. The class name (File Transfer Protocol) and its
method name (transferFile) are not italicized in Figure 10 because, by virtue
of being an interface class, the class and its methods must be abstract.

The Protocol Factory class defines a single method, makeProtocol, that takes a
site name as an argument and returns a File Transfer Protocol reference.
Internally, a Protocol Factory instance must query the remote site with the
specified site name to determine which protocol is currently in use at that site.
It must then create the appropriate Protocol instance and its corresponding
Adapter instance.

Figure 8: The File Transfer Agent class.

File Transfer

fileName
site

Request

priority
retryCount
sendTime

queryStatus()
 : Status

addEntry
 (FileTransferRequest,

Transfer Queue

 priority)
removeEntry
 (FileTransferRequest)
firstEntry()
 : FileTransferRequest

status

1 *{ordered}

«process»
File

Transfer

«executes»

Agent
© 1999-2007 by Objective Engineering, Inc. Page 11

Note: This figure and others in this solution assume that a Java-style or
Smalltalk-style superclass reference is returned. For C++, you would
return a base class pointer.

Figure 11 depicts the Protocol Factory class. The single Protocol Factory
instance maintains a local Remote Site Proxy object for each remote site. Each
such Proxy object serves as a surrogate for an object on the remote site,
encapsulating the mechanism required to communicate with that remote object.
The Protocol Factory selects a particular Remote Site Proxy instance using the

Figure 9: The evolving design.

File Transfer

fileName
site

Request

priority
retryCount
sendTime

queryStatus()
 : Status

addEntry
 (FileTransferRequest,

Transfer Queue

 priority)
removeEntry
 (FileTransferRequest)
firstEntry()
 : FileTransferRequest

status

1

*

{ordered}

«executes»

File Transfer Facility

transferFile(...): transferId
queryTransferStatus
 (transferId): Status
cancelTransfer(transferId)

transferId

1

Client

* 1

1

Facade

facade

«process»
File

Transfer
Agent
© 1999-2007 by Objective Engineering, Inc. Page 12

site name as a key. It then asks that Proxy for the remote site’s protocol (and,
by some magic, the Proxy connects to its remote object to determine a reply). If
the remote object implements the same interface as does its local proxy, then
the use of a Remote Site Proxy is an application of the Proxy design pattern
[GHJ&V, pp. 207-217].

Although not included in Figure 11, the Protocol Factory class has a
dependency on the two Adapter classes as well as the two Protocol classes. A
Factory must create an instance of both an Adapter and a Protocol.

The class diagram for the complete design is the combination of Figures 9 and
11. Figure 12 contains a collaboration diagram for the following scenario:

1. The Transfer Agent removes a File Transfer Request object from the head
Request Queue.

Direct Send

transferFile()

«interface»

transferFile()

Figure 10: The adapter classes.

File Transfer

Adapter

target

adaptee

adapter
Adapter

Partial Send

transferFile()

Adapter

Direct Send

sendFile()

Protocol
Partial Send

openConnection

Protocol

sendFilePart
closeConnection

Protocol
© 1999-2007 by Objective Engineering, Inc. Page 13

2. The Transfer Agent obtains the remote site name from the Request, then
asks the Protocol Factory to create a Protocol object for that site.

3. The Protocol Factory queries the remote site to determine the protocol
that site is currently using, then creates the appropriate Protocol and
Adapter instances. It returns an Adapter reference to the Transfer
Agent.

4. The Transfer Agent asks the Adapter to transfer the file.

The collaboration diagram in Figure 12 does not model the Remote Site Proxy’s
communication with the remote site.

Direct Send

transferFile()

«interface»

transferFile()

Figure 11: The Protocol Factory class.

File Transfer

makeProtcol(siteName)
 : FileTransferProtocol

 Protocol Factory

siteName

1 Adapter
Partial Send

transferFile()

Adapter

Direct Send

sendFile()

Protocol
Partial Send

openConnection

Protocol

sendFilePart
closeConnection

Protocol

Remote

getCurrentProtocol()

Site Proxy

 : ProtocolType

Remote
Site

1

© 1999-2007 by Objective Engineering, Inc. Page 14

: File
Transfer
Agent

Figure 12: A collaboration diagram depicting a file transfer.

req : File
Transfer
Request

: Request
Queue

3: makeProtocol(“JoesBar”)

1: firstEntry()

Joes

req

3.2: new() : Protocol
Factory

2: siteName()

“JoesBar”

a

Bar

: Remote
Site

3.1: getCurrentProtocol()

DSP

a : Direct
Send

Adapter

{new}

: Direct
Send

Protocol

{new}

3.3: new()

4: transferFile()

4.1: sendFile()

success

«process»
© 1999-2007 by Objective Engineering, Inc. Page 15

Recall that the bold border around the File Transfer Agent instance in the figure
indicates that the instance is an active object. An active object has its own
thread of control in the form of a task, process, or thread. In this case, the File
Transfer Agent instance (like its class in previous figures) is stereotyped to
indicate it is a process.

The Transfer Agent handles any errors that occur when sending a file. For
example, if the transfer of a file fails, the Transfer Agent will continue to attempt
to send the file until the File Transfer Request's retry count is exhausted.
Because such a failure may be due to a problem at the receiving site, the
Transfer Agent probably should place the Transfer Request back onto the
Transfer Queue. (If the remote site is down, resending the file immediately will
produce an identical, unsuccessful result.) Likewise, if the Protocol Factory is
unable to contact the remote site to determine which protocol to employ, the
Transfer Agent should re-queue the Transfer Request.

Variations

Recall the assumption that clients use remote method invocations to call
methods on application objects (in this case, on a facade instance). Suppose,
however, that clients are browsers using the HyperText Transfer Protocol (HTTP)
to communicate with your file transfer facility. How would that affect the
design?

In an HTTP-based solution, a client interface (such as a browser) interacts with
an application by issuing an HTTP request. A web server on the application
machine receives the request and dispatches it to a server-side entity, such as a
Java servlet or a CGI script, responsible for processing such requests. A typical
design has one web page for each use case initiated by an actor (as well as a
“home page” presented when the actor first initiates the application). Each web
page in turn might be associated with one servlet or CGI script that handles
requests for that page.

To support browser-based clients of the file transfer facility, you replace (or
complement) the (RMI-oriented) File Transfer Facility facade with a servlet-
based or CGI-based approach. For a servlet-based approach, for example, you
design a web page for each use case (as well as a “home page” that initially
displays), and you introduce a servlet to process each web page. Figure 13
depicts a client’s interaction with those servlets. The “stacking” of the servlet
class and its generic name are intended to indicate that multiple transfer
servlets, the specifics of which do not appear in the diagram, will be a part of
this design.

Consider Figure 6 again. The class diagram in this figure depicts the File
Transfer Facility facade’s interactions with other transfer classes. Figure 14
illustrates the analogous interactions of the Transfer File Servlet class with the
© 1999-2007 by Objective Engineering, Inc. Page 16

transfer classes. An instance of this servlet will handle applications of the
Transfer File use case. When handling a transfer request, the servlet must
create a File Transfer Request instance, and it must add that instance to the
Transfer Queue. Put another way, the servlet must carry out the same steps for
this use case as did the facade in the RMI-based design.

«servlet»
Transfer
Servlet

«HTTP connection»

Figure 13: A part of a class diagram for HTTP-based interactions.

Client

Figure 14: The Transfer File Servlet class.

File Transfer

fileName
site

Request

priority
retryCount
sendTime

queryStatus()
 : Status

addEntry
 (FileTransferRequest,

Transfer Queue

 priority)
removeEntry
 (FileTransferRequest)
firstEntry()
 : FileTransferRequest

status

transferId

1

1

*{ordered}

«servlet»
Transfer

File Servlet

Client
«HTTP connection»
© 1999-2007 by Objective Engineering, Inc. Page 17

A servlet-based design also includes a servlet for each of the home page, the
Cancel Transfer use case, and the Query Transfer Status use case. Each servlet
would mimic the steps of the facade when carrying out that use case. Note that
the servlets might in fact be implemented as JavaServer Pages. Additionally,
you might use one or more JSPs to present the results of each servlet request.
A discussion of the detailed design of servlets and JSPs for this application is
beyond the scope of this paper.

References

[GHJ&V] E. Gamma, R, Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Trademarks

Java and JavaServer are registered trademarks of Sun Microsystems. Inc.
© 1999-2007 by Objective Engineering, Inc. Page 18

	Part I: The Problem
	You must support client applications that will release software electronically. One part of that ...
	Assume that your site already has low-level file transfer protocol classes, each instance of whic...
	send(f: File), transfers the file and returns a status of fileTransferred or transferFailed.
	The other is a partial send protocol. It can transfer files of up to 100KB in size. Longer files ...
	openConnection(filename), opens a connection to the remote site so that a file of the stated name...
	sendFilePart(file), sends a file (or portion of a file) of up to 100KB in size, returning a statu...
	closeConnection(), informing the remote site that all parts of this file have now been sent (and...
	The protocol you use to send a file must match the protocol the client site is using to receive t...
	When transferring a file, each protocol object will place the transferred file in a special direc...
	Because new protocols may by introduced in the future, you should make your design as tolerant of...
	Your file transfer package should handle transfers at any of three priorities: background, normal...
	You should allow transfers with retry counts. In the case of transmission errors, a transfer with...
	Your package should also support transfers at (or about) time t. If a client asks to transfer a f...
	A client must be able to query the status of a transfer. Possible status values include pending, ...
	You can support broadcasts to multiple sites, but you need not do so. (This feature is on someone...
	Part II: A Solution
	The document contains a description of a file transfer facility. This facility permits client pro...
	The solution presented here includes a model of functional requirements and a design. The functio...
	The design is cast as a class diagram and a set of interaction diagrams.
	A Requirements Model

	A client program can make three types of requests:
	a) It can request that a file be transferred;
	b) It can query the status of a transfer; and
	c) It can cancel a pending transfer.
	Several variations of the first use case exist based on the arguments supplied by the client. For...
	A client program and a remote site are the two types of actors in this system. Figure 1 contains ...
	The textual descriptions of these use cases are:
	Request Transfer. The client program requests that a specific file be transferred to a specific r...
	Query Transfer Status. The client program requests the current status of a specific transfer. The...
	Cancel Transfer. The client program asks that a specific transfer be canceled. If the transfer is...
	To clarify the details of the Request Transfer use case, you can model that function with an acti...
	If the file is to be transferred now, the request is immediately queued by the Queue Request acti...
	When the request reaches the head of the (logical) transfer queue, it is transferred by the Trans...
	The Design

	First, consider the interface to be provided to client programs. What type of interface should yo...
	One possible interface is a facade [GHJ&V, pp.185-193] that offers all the capabilities required ...
	The transferFile method in the File Transfer Facility class must be overloaded to include variant...
	A minor disadvantage of the facade class is the need to create and maintain an identifier for eac...
	As an alterative to the File Transfer Facility facade, you could provide the client with a File T...
	The File Transfer Request class is Figure 4 is an application of the Command design pattern [GHJ&...
	Aside from the actual interface provided to client programs, the designs with a facade and with a...
	Figure 5 shows one way in which that initiation can be handled. The figure is an elaboration of F...
	The disadvantage of the solution in Figure 5 is that each transfer requires a separate thread or ...
	The design described from this point forward employs the facade class in Figure 3, as well as the...
	File Transfer Request. Unlike the class of the same name in Figures 4 and 5, an instance of this ...
	Transfer Queue. This is a priority-ordered queue that holds the File Transfer Request instances. ...
	File Transfer Agent. An instance of this class takes File Transfer Requests from the front of the...
	Protocol Factory. The File Transfer Agent uses an instance of this class to create the appropriat...
	When asked to transfer a file, the File Transfer Facility must create a File Transfer Request ins...
	Figure 6 depicts the File Transfer Request class and its relationship with the Request Queue clas...
	Note that when it creates a File Transfer Request with a later transfer time, the File Transfer F...
	Figure 7 contains a collaboration diagram for a scenario in which a client issues a request to tr...
	How does the actual transfer described by a File Transfer Request instance occur? An instance of ...
	The File Transfer Agent will use a Protocol Factory object to obtain the appropriate Protocol obj...
	Recall that the two existing Protocol classes have different interfaces. The Direct Send Protocol...
	An object adapter is placed atop each specific Protocol instance. That adapter, an instance of th...
	Both adapter classes are derived from a common File Transfer Protocol interface class that define...
	The Protocol Factory class defines a single method, makeProtocol, that takes a site name as an ar...
	Note: This figure and others in this solution assume that a Java-style or Smalltalk-style supercl...
	Figure 11 depicts the Protocol Factory class. The single Protocol Factory instance maintains a lo...
	Although not included in Figure 11, the Protocol Factory class has a dependency on the two Adapte...
	The class diagram for the complete design is the combination of Figures 9 and 11. Figure 12 conta...
	1. The Transfer Agent removes a File Transfer Request object from the head Request Queue.
	2. The Transfer Agent obtains the remote site name from the Request, then asks the Protocol Facto...
	3. The Protocol Factory queries the remote site to determine the protocol that site is currently ...
	4. The Transfer Agent asks the Adapter to transfer the file.
	The collaboration diagram in Figure 12 does not model the Remote Site Proxy’s communication with ...
	Recall that the bold border around the File Transfer Agent instance in the figure indicates that ...
	The Transfer Agent handles any errors that occur when sending a file. For example, if the transfe...
	Variations

	Recall the assumption that clients use remote method invocations to call methods on application o...
	In an HTTP-based solution, a client interface (such as a browser) interacts with an application b...
	To support browser-based clients of the file transfer facility, you replace (or complement) the (...
	Consider Figure 6 again. The class diagram in this figure depicts the File Transfer Facility faca...
	A servlet-based design also includes a servlet for each of the home page, the Cancel Transfer use...
	References

	[GHJ&V] E. Gamma, R, Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object...
	Trademarks

	Java and JavaServer are registered trademarks of Sun Microsystems. Inc.

